205 research outputs found

    Numerical simulation of transfer and attenuation characteristics of soft-tissue conducted sound originating from vocal tract

    Get PDF
    A non-audible murmur (NAM), a very weak speech sound produced without vocal cord vibration, can be detected by a special NAM microphone attached to the neck, thereby providing a new speech communication tool for functional speech disorders as well as human-to-machine and human-to-human interfaces with inaudible voice input for use with unimpaired. The NAM microphone is a condenser microphone covered with soft-silicone impression material that provides good impedance matching with the soft tissues of the neck. Because higher-frequency components are suppressed severely, however, the NAM detected with this device can be insufficiently clear. To improve NAM clarity, the mechanism of NAM production as well as the transfer characteristics of the NAM in soft neck tissues must be clarified. We have investigated sound propagation from the vocal tract to the neck surface, using a finite difference time domain method and a head model based on magnetic resonance imaging scans. Numerical results show that, compared to air-conducted sound detected in front of a mouth, soft-tissue-conducted sound attenuates 50 dB at 1 kHz, which consists of 30 dB full-range attenuation due to air-to-soft-tissues transmission loss and -10 dB/octave spectral decay due to a propagation loss in soft tissues. The decay agrees well with the spectral characteristics of the measured NAM. (C) 2008 Elsevier Ltd. All rights reserved.ArticleAPPLIED ACOUSTICS. 70(3):469-472 (2009)journal articl

    Silent-speech enhancement using body-conducted vocal-tract resonance signals

    Get PDF
    The physical characteristics of weak body-conducted vocal-tract resonance signals called non-audible murmur (NAM) and the acoustic characteristics of three sensors developed for detecting these signals have been investigated. NAM signals attenuate 50 dB at 1 kHz; this attenuation consists of 30-dB full-range attenuation due to air-to-body transmission loss and 10 dB/octave spectral decay due to a sound propagation loss within the body. These characteristics agree with the spectral characteristics of measured NAM signals. The sensors have a sensitivity of between 41 and 58 dB [V/Pa] at I kHz, and the mean signal-to-noise ratio of the detected signals was 15 dB. On the basis of these investigations, three types of silent-speech enhancement systems were developed: (1) simple, direct amplification of weak vocal-tract resonance signals using a wired urethane-elastomer NAM microphone, (2) simple, direct amplification using a wireless urethane-elastomer-duplex NAM microphone, and (3) transformation of the weak vocal-tract resonance signals sensed by a soft-silicone NAM microphone into whispered speech using statistical conversion. Field testing of the systems showed that they enable voice impaired people to communicate verbally using body-conducted vocal-tract resonance signals. Listening tests demonstrated that weak body-conducted vocal-tract resonance sounds can be transformed into intelligible whispered speech sounds. Using these systems, people with voice impairments can re-acquire speech communication with less effort. (C) 2009 Elsevier B.V. All rights reserved.ArticleSPEECH COMMUNICATION. 52(4):301-313 (2010)journal articl

    Evaluation of a focused laser spot diameter for an optical angle sensor

    Get PDF
    This paper presents a new method for measurement of a focused laser beam diameter by using a single cell photodiode (PD) for achievement of further higher measurement sensitivity of an optical angle sensor based on laser autocollimation. The proposed method referred to as the PD edge method utilizes an edge of the PD active cell in the same manner as the conventional knife-edge method, which is often employed for the evaluation of light spot diameter. The proposed PD edge method is expected to evaluate the focused laser beam diameter without the influence of light diffraction, which is often observed in the case of knife-edge method. After a description of the proposed PD edge method, its feasibility is demonstrated throughout the experiments by using a developed prototype optical setup

    Characteristics of Ozone Jet Generated by Dielectric-Barrier Discharge

    Get PDF
    科研費報告書収録論文(課題番号:17206016/研究代表者:西山秀哉/プラズマ流動システムのマルチスケール統合化による最適制御)77
    corecore